Узел теплого пола: схемы подключения, советы как сделать грамотную разводку и установку теплого пола (105 фото)

Содержание

Конструкции смесительных узлов

Рассмотренные выше схемы показывают лишь принцип циркуляции теплоносителя в отопительных контурах. Для каждой схемы используются разные конструкции смесительных узлов. Причем в каждой из двух типов существует довольно большое количество разнообразных конструкций которые используют разное оборудование и комплектации.

В общем, по конструкции все схемы смесительных узлов можно разделить на такие изделия:

  • на 3-ходовых клапанах;
  • на 2-ходовых клапанах.

Каждая из этих конструкций может быть изготовлена с использованием разных элементов в разной последовательности и с разным расположением. Так как последовательные схемы смесительных узлов более распространены и чаще применяются при самостоятельном изготовлении, больше внимания уделим им.

На 2-х ходовых клапанах

На 2-х ходовых клапанах также реализуют схемы с параллельным и последовательным смешением. Пример узла представлен на изображении.

Схема последовательного смешения с 2-х ходовым клапаном.

Выбор клапана и схемы расположения проводят в основном исходя из возможной компоновки узла, места для него и других характеристик системы. Нельзя сказать, что узел на 3-х ходовом клапане работает лучше, или наоборот.

На трехходовых клапанах

Если используется смеситель для теплого водяного пола на базе 3-х ходового клапана схема проектируется чаще всего как последовательная. В таком случае трехходовой клапан может быть установлен как на подающей ветке, так и на обратной.

Схема последовательного смешения с 3-х ходовым клапаном.

В первом случае он работает как клапан смесительного типа, в котором поток воды из обратного трубопровода смешивается с подающим и дальше прокачивается насосом в ветки теплого пола. При установке клапана на «обратке» он выполняет функции разделителя потока.

На перемычке между подающим и обратным трубопроводом возможна установка обратного клапана, который будет перекрывать поток в случае остановки насоса, но при открытом трехходовом. Такая ситуация возможна при реализации функции регулирования теплого пола насосом. Этот клапан также можно устанавливать и в схемах с двухходовым клапаном или в узле параллельного смешения.

Схема параллельного смешения с 3-х ходовым клапаном.

Для смешения и разделения используются два разных изделия, которые не взаимозаменяемы. Для маркировки на корпусе клапана указана схема движения воды.

Разделительный и смесительный клапаны.

Регуляция температуры

Узел подмеса для теплого пола работает с грамотным контролем температуры. Для этого используются термоголовки, термодатчики от которых крепятся к подающему или обратному трубопроводу. Какой вариант лучше выбрать? Каждый из них отличается нюансами.

Если регуляция будет проходить по температуре подающего трубопровода, то в ветки теплого пола будет подаваться теплоноситель постоянной температуры. Если термодатчик установить на «обратке», то постоянной будет именно температура в обратном трубопроводе. Во втором варианте в зависимости от увеличения или уменьшения теплосъема, похолодания или потепления температура подающего теплоносителя будет меняться. При этом средняя температура самой поверхности пола обычно более равномерна, чем в первом варианте.

Многие производители теплотехнического оборудования представляют программные продукты, для упрощения выбора насосов, клапанов и других приборов. Без того, чтобы изучать сложные формулы и таблицы.

После того как выбрана схема, комбинация комплектующих и характеристики насосов и клапанов приступают к сборке с соблюдением всех норм монтажа отопительного оборудования.

Хорошая реклама

Самое читаемое

Комплектация узла и принцип работы оборудования

В основе всей конструкции лежит простой и понятный комплекс оборудования, каждое из которых выполняет свою определенную роль в работе всего устройства. На первый взгляд конструкция довольно сложная, однако при детальном анализе, место и функциональность каждого прибора имеет свое объяснение. В большинстве случаев смесительные узлы комплектуются стандартно. В комплект входят следующие элементы:

насосное оборудование, обеспечивающее циркуляцию воды в системе. С помощью насоса создается необходимое рабочее давление в трубопроводе, обеспечивается необходимая скорость подачи теплоносителя в водяной контур. На рисунке показаны рекомендуемые положения насоса. Можно использовать в работе насосы с сухим или с мокрым ротором.

  • узел подмеса — устройство, осуществляющую непосредственную регулировку температуры нагрева теплоносителя. Обычно это трехходовой кран с ручным управлением или трехходовой электромеханический клапан. Основная задача прибора, подпитка основного контура горячей водой. За счет взаимосвязи термостата с краном, осуществляется периодические включения, выключения клапана. Нагретая вода в результате работы поступает в теплый пол в том объеме, в котором необходимо для нормальной работы. При достижении в отапливаемом помещении необходимой температуры, клапан срабатывает в обратном направлении, перекрывая подачу горячей воды.
  • коллекторная группа — устройство обеспечивающее сбор и распределение теплоносителя непосредственно циркулирующего в петлях водяного контура. Коллектор состоит из двух частей, гребенка для сбора отработанной воды и гребенка для распределения подготовленного теплоносителя в систему теплых полов. С помощью коллектора можно подключить не один, а несколько водяных контуров. В гребенке имеется для этой цели несколько патрубков, в зависимости от количества водяных контуров. На подающую часть коллектора устанавливается расходомер, контролирующий расход теплоносителя в системе отопления.
  • последним звеном в цепи приборов и устройств, стоящих на оснащении насосно-смесительного узла является воздухоотводчик. Это самый простой вариант коллектора, который является сепаратором, обеспечивающим удаление воздуха из водяных контуров системы отопления.

Перечислив основные элементы блока, следует сказать пару слов о вспомогательных устройствах и приспособлениях, входящих в комплект насосно-смесительного узла. Речь идет о термостатах и клапанах, приводящих в действие насос.

На рисунке представлена принципиальная схема работы насосно-смесительных конструкций, стоящих на оснащении теплых водяных полов.

Если вы решили сделать коллектор своими руками, необходимо брать во внимание на следующий факт. Насос ставится в таком положении, сразу после трехходового клапана, не мешая его работе, а наоборот, вытягивал смешенную воду из него

Т.е. сначала устанавливается трехходовой клапан, потом насосный узел и уже следом за ними, коллектор. В любой другой конфигурации регулировка температуры нагрева теплоносителя и интенсивность циркуляции  будет невозможна.

В дополнение ко всему, можно сказать, что насосно-смесительные блоки принято оснащать байпасом. Это обводная труба, через которую циркулирует теплоноситель в обход клапана и циркулирующего насоса.

Такая схема применяется в тех ситуациях, когда возникает необходимость направить обратку сразу через байпас в систему.

Как видно из описания оборудования, входящего в комплект смесительных станций, ничего сложного в конструкции нет. Поэтому при желании, вы можете сами собрать подобное устройство и обеспечить себе существенную экономию средств.

Схемы насосно-смесительных узлов

Насосно-смесительные узлы собираются несколькими способами, отличие кроется в подсоединение насоса и в виде клапана.

Схемы подключения узла

С последовательным подключением насоса

При включённом насосе по последовательной схеме осуществляется лишь подготовка теплоносителя и обеспечение его перемещения по петлям. Несмотря на потребность в двух отдельных аппаратах для перекачки жидкости по первичному и вторичному контурам, данная схема более совершенна технологически.

Она имеет повышенную производительность, чем при параллельном подключении. Поэтому, профессионалы чаще используют именно этот вариант при установке тёплых полов.

Однако, для эффективности работы пола при такой сборке, важную роль играет правильность расчёта и настройки, а также точность составленного чертежа.

С параллельным

Плюс параллельной схемы — требуется всего один аппарат для перекачки воды по обоим контурам. Это значительно упрощает сборочный процесс, но необходим более мощный агрегат.

Если смешивающее устройство планируется для небольшой отопительной системы, то рекомендуется параллельная компоновка. Так как при сборке такой конструкции собственноручно, происходит меньше проблем, тем самым проще избежать возникновения серьёзных ошибок. Но для больших площадей тёплого пола данная схема не подходит — низкая производительность и эффективность.

Необходимость смесительных узлов в системе теплого пола

При устройстве водяного отопления с использованием радиаторов или другого высокотемпературного оборудования, теплоноситель может на них подаваться практически любой температуры, которую способен выдать котел. Но ситуация с тёплыми полами кардинально отличается. По строительным нормам и здравому смыслу существует ограничение максимальной температуры поверхности пола. Превышение которой делает эксплуатацию системы не комфортной и даже опасной.

Например, по СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование воздуха» максимальная температура пола, в котором используется система встроенного подогрева не может превышать:

  • 26 °C для комнат с постоянным пребыванием людей;
  • 31 °C для комнат с временным пребыванием людей и некоторых зон крытых плавательных бассейнов;
  • 23 °C для дошкольных учреждений.

Эти ограничения затрудняют использование котла без смесительного узла для теплого пола. Так как без него теплоноситель неизбежно будет поднимать температуру теплого пола выше граничного значения. А температура теплоносителя может достигать уровня выше 80 °C.

Смесительный узел теплого пола в таком случае позволяет подавать в трубы теплоноситель оптимальной температуры. Принципиально ли его применение и можно ли выйти из положения без него?

Обязательность использования смесительных узлов

Как мы уже определились, основная цель смесительного узла – это поддерживать температуру воды в системе на требуемом уровне. Для этого берется часть воды от котла с повышенной температурой и смешивается с некоторым количеством воды из «обратки» до достижения требуемого уровня, который позволяет достичь оптимальной температуры пола.

Если исключить из схемы насосно-смесительный узел для теплого пола, то необходимо обеспечить поддержку температуры другим способом. Как вариант, возможно применение низкотемпературного котла, который способен обеспечивать температуру подаваемой воды в районе 35-38 °C, чтобы поддерживать требуемый нагрев пола. Чаще всего для этих целей рекомендуют электрокотлы. Также в таком режиме работают водяные тепловые насосы.

Схема теплого пола без смесительного узла.

Следует также иметь в виду, что теплый пол без смесительного узла практически невозможно использовать при комбинации напольного и радиаторного нагрева, так как для радиаторов температура должна быть достаточно высокой, чтобы обеспечивать оптимальную теплоотдачу. Если же теплый пол используется как основной источник, то при применении хорошего котла с подходящими характеристиками смесительный узел может не использоваться.

Итак, если необходимость смесительного узла не ставится под сомнение, как поступить в таком случае? Можно применить изделие заводского изготовления, которое рассчитано и протестировано для бесперебойной работы, но основным недостатком таких систем является их дороговизна.

Как вариант можно использовать самодельный смесительный узел для теплого пола. Основное его преимущество – существенно меньшая цена. В среднем, такой узел выходит в 3-4 раза дешевле, чем заводского изготовления, но возникают вопросы в его расчете и подборе элементов. Ведь при неправильном подборе теплый пол будет работать неравномерно или вообще его эксплуатация будет существенно затруднена.

Как создать своими руками смесительный узел? В общем, основные задачи при такой постановке вопроса сводятся к следующим пунктам:

  • выбрать схему и конструкцию смесительного узла;
  • подобрать необходимые элементы;
  • рассчитать производительность насоса и характеристики других изделий;
  • смонтировать узел.

Принципы монтажа ничем не отличаются от создания отопительной сети

Основное внимание нужно уделить расчету, выбору схемы и подбору оборудования.  На чем и будем акцентировать внимание далее

Комплектация смесительного узла

Добиться обеспечения функциональности системы ТП возможно, только имея четкое представление о строении НСУ, практическом назначении его основных и вспомогательных элементов. Устройство и работу типового узла удобно будет разобрать на примере схемы с последовательным включением насосного агрегата и двухходовым клапаном-термостатом (рис. 3). Указанную компоновку имеет смесительный узел для теплого пола Valtec (рис.5), реализуемый в торговой сети в виде готового комплекта оборудования.

Рисунок 3

Основные функциональные элементы НСУ Valtec

К ним относятся:

  • циркуляционный насос;
  • клапан балансировочно-запорный (первичного контура);
  • клапан балансировочный (вторичного контура);
  • байпасный клапан (перепускной).

Насос (рис. 3 и 5, поз.3)

Инициирует подачу и возврат теплоносителя через узлы и петли ТП. Применяется циркуляционное оборудование аналогичное тому, которое используется в первичных контурах системы отопления. Величин его главных рабочих параметров (давление и производительность) должно хватать на преодоление гидросопротивлений в трубопроводах, чтобы обеспечивать циркуляцию теплоносителя с требуемой скоростью и в заданных объемах.

Балансирный клапан первичного контура (рис. 3 и 5, поз.8)

Отвечает за поступающие объемы теплоносителя, подпитывающего систему теплого пола из первичного высокотемпературного контура отопления (Т1, Т2). Балансировка потока жидкости осуществляется изменением пропускной способности клапана. Регулировка балансирного клапана выполняется путем вращения его настроечного винта с головкой под ключ-шестигранник, который закрывается защитным колпачком. Процесс также синхронизируется с работой клапана-термостата (поз. 1), управляемого выносным погружным датчиком (поз. 1а). Чувствительный элемент датчика монтируется в резьбовую гильзу (поз. 4).

Балансирный клапан вторичного контура (рис. 3 и 5, поз.2)

Его настройка зависит от площади подогреваемой поверхности напольного покрытия. Открытие/закрытие регулирующего устройства влияет на изменение пропорции соотношения объемов теплоносителей из обратки ТП (Т21) и подачи первичной системы отопления (Т1). Прикрытие балансировочным клапаном оборотного потока из вторичного контура способствует более интенсивному поступлению разогретой жидкости от теплогенератора (котла). Таким образом, теплопроизводительность ТП увеличивается.

Установка степени открытия клапана (рис. 4) осуществляется по шкале  на его оголовке (рис. 5, поз. 2), где указана его пропускная способность в м3/час. После завершения настройки шкала от случайного смещения фиксируется винтом 2а.

Рисунок 4

Байпасный клапан (рис. 3 и 5, поз.7)

Совместно с перепускным патрубком (поз. 12) обеспечивает безаварийную работу циркуляционного насоса в режиме подпора, когда циркуляция через петли ТП прекращается полностью либо становится недостаточной. Подобный режим может быть вызван перекрытием контуров на гребенке посредством ручных вентилей либо же работой их клапанов с простым термостатическими или автоматическим управлением. В результате сопротивление течению жидкости, как и нагрузка на оборудование, увеличиваются. При определенном перепаде давления, величина которого настраивается по шкале перепускного клапана (градуировка в бар), он приоткрывается. Теплоноситель либо часть его потока начинает перетекать по байпасному патрубку, замыкая через насос малый цикл циркуляции. Таким образом, исключается аварийная перегрузка и обеспечивается сохранность оборудования.

Вспомогательные элементы

Обеспечивать, поддерживать и контролировать работу НСУ также помогают различные вспомогательные и сервисные устройства:

  • термометры – поз. 5;
  • воздухоотводчики поплавкого типа (автоматические) – поз. 9;
  • дренажные клапаны – поз. 10;
  • обратный шаровый клапан – поз. 11.

Рисунок 5

Описание

Условно систему обогрева помещения с использованием внутренних трубопроводов скрытых в полу можно представить в виде нескольких взаимосвязанных элементов:

  • котел, который нагревает теплоноситель;
  • распределительный или по-другому смесительный узел;
  • система управления;
  • трубопроводы;

Каждый элемент этой системы по-своему важен, но наибольшее внимание как в процессе сборки, так и в процессе эксплуатации относится к смесительному узлу или коллектору. По сути, коллектор представляет собой узел специальной подготовки теплоносителя для последующей подачи в трубопровод обогревающего контура.

Сам коллектор состоит из набора трубопроводов оснащенных специальным оборудованием контроля и управления в виде датчиков, клапанов, регуляторов и циркуляционного насоса

В смесительном узле производится подготовка и распределение теплоносителя перед подачей в трубопровод и контроль температурного режима воды, поступающей после прохождения по трубам

Сам коллектор состоит из набора трубопроводов оснащенных специальным оборудованием контроля и управления в виде датчиков, клапанов, регуляторов и циркуляционного насоса. В смесительном узле производится подготовка и распределение теплоносителя перед подачей в трубопровод и контроль температурного режима воды, поступающей после прохождения по трубам.

Необходимость смесительных узлов в системе теплого пола

При устройстве водяного отопления с использованием радиаторов или другого высокотемпературного оборудования, теплоноситель может на них подаваться практически любой температуры, которую способен выдать котел. Но ситуация с тёплыми полами кардинально отличается. По строительным нормам и здравому смыслу существует ограничение максимальной температуры поверхности пола. Превышение которой делает эксплуатацию системы не комфортной и даже опасной.

Например, по СНиП «Отопление, вентиляция и кондиционирование воздуха» максимальная температура пола, в котором используется система встроенного подогрева не может превышать:

  • 26 °C для комнат с постоянным пребыванием людей;
  • 31 °C для комнат с временным пребыванием людей и некоторых зон крытых плавательных бассейнов;
  • 23 °C для дошкольных учреждений.

Эти ограничения затрудняют использование котла без смесительного узла для теплого пола. Так как без него теплоноситель неизбежно будет поднимать температуру теплого пола выше граничного значения. А температура теплоносителя может достигать уровня выше 80 °C.

Смесительный узел теплого пола в таком случае позволяет подавать в трубы теплоноситель оптимальной температуры. Принципиально ли его применение и можно ли выйти из положения без него?

Обязательность использования смесительных узлов

Как мы уже определились, основная цель смесительного узла – это поддерживать температуру воды в системе на требуемом уровне. Для этого берется часть воды от котла с повышенной температурой и смешивается с некоторым количеством воды из «обратки» до достижения требуемого уровня, который позволяет достичь оптимальной температуры пола.

Если исключить из схемы насосно-смесительный узел для теплого пола, то необходимо обеспечить поддержку температуры другим способом. Как вариант, возможно применение низкотемпературного котла, который способен обеспечивать температуру подаваемой воды в районе 35-38 °C, чтобы поддерживать требуемый нагрев пола. Чаще всего для этих целей рекомендуют электрокотлы. Также в таком режиме работают водяные тепловые насосы.

Схема теплого пола без смесительного узла.

Следует также иметь в виду, что теплый пол без смесительного узла практически невозможно использовать при комбинации напольного и радиаторного нагрева, так как для радиаторов температура должна быть достаточно высокой, чтобы обеспечивать оптимальную теплоотдачу. Если же теплый пол используется как основной источник, то при применении хорошего котла с подходящими характеристиками смесительный узел может не использоваться.

Итак, если необходимость смесительного узла не ставится под сомнение, как поступить в таком случае? Можно применить изделие заводского изготовления, которое рассчитано и протестировано для бесперебойной работы, но основным недостатком таких систем является их дороговизна.

Как вариант можно использовать самодельный смесительный узел для теплого пола. Основное его преимущество – существенно меньшая цена. В среднем, такой узел выходит в 3-4 раза дешевле, чем заводского изготовления, но возникают вопросы в его расчете и подборе элементов. Ведь при неправильном подборе теплый пол будет работать неравномерно или вообще его эксплуатация будет существенно затруднена.

Как создать своими руками смесительный узел? В общем, основные задачи при такой постановке вопроса сводятся к следующим пунктам:

  • выбрать схему и конструкцию смесительного узла;
  • подобрать необходимые элементы;
  • рассчитать производительность насоса и характеристики других изделий;
  • смонтировать узел.

Принципы монтажа ничем не отличаются от создания отопительной сети

Основное внимание нужно уделить расчету, выбору схемы и подбору оборудования.  На чем и будем акцентировать внимание далее

Устройство

Обязательные элементы

Смесительный узел теплого пола включает:

Изображение Описание
Циркуляционный насос, обеспечивающий движение теплоносителя в низкотемпературном контуре.
Термостатический трехходовый клапан, отвечающий за подачу более горячего теплоносителя по мере остывания малого контура.

Клапан может быть сильфонным (то есть использующим расширение твердой, жидкой или газообразной среды при нагреве) и электрическим (снабженным термопарой и сервоприводом).

Опционально прибор снабжается выносным термодатчиком — капиллярным или электрическим.

Как это работает?

  1. Когда температура малого контура соответствует заданной, насос обеспечивает непрерывную циркуляцию постоянного объема теплоносителя в нем;
  2. При падении температуры термостатический клапан приоткрывается, и в остывший контур подмешивается порция горячей воды или антифриза;
  3. Как только температура достигнет заданной, клапан снова закрывается.

Работа трехходового клапана смесительного узла.

Нередко смеситель комплектуется не трехходовым, а двухходовым клапаном (термоголовкой). В этом случае байпас между подачей и обраткой с установленным на нем насосом подключается сразу после термоголовки.

Смеситель с двухходовым клапаном.

Опциональные элементы

Кроме того, схема смесительного узла может включать дополнительное оборудование:

Изображение Описание
Коллектор — гребенку подачи и обратки. Поскольку из-за ограничений, связанных с гидравлическим сопротивлением трубопровода, длина одного контура не может быть больше 120 метров, в большом помещении требуется монтировать несколько контуров.
Дроссели или термоголовки для раздельной регулировки пропускной способности контуров (читай — их температуры) и шаровые краны для их независимого отключения.
Автоматические воздушники на подающем и обратном коллекторах, исключающие их завоздушивание и нарушение циркуляции.
Сбросники, позволяющие осушить оба коллектора.

Особенности монтажа и подключения

Работы по сборке и подключению должны проводить профессиональные работники специализированной компании. Перед началом работ по установке оборудования необходимо проконтролировать состояние всех элементов и составляющих смесительного узла, целостность изоляции электропроводов привода и циркуляционного насоса.

Требования к установке электрооборудования

  • Включение насоса в электросеть должно происходить с применением трёхжильного кабеля.
  • На кожухе насоса необходимо установить коммутационную коробку, куда завести фазу, ноль и заземление. Доступ к клеммам должен осуществляться путём откручивания винтового элемента в середине защитной крышки коробки.
  • Вывод электрокабеля из коммутационной коробки необходимо производить через изоляционное кольцо.
  • Запрещается подавать ток на электрический кабель до окончания монтажных работ.
  • Работы по обслуживанию должны проводиться только при отключенном смесительном узле.

Чтобы предотвратить нештатные ситуации в ходе эксплуатации смесительных гидроблоков вентиляционных систем, необходимо точно рассчитать и подобрать соответствующие требованиям типоразмеры клапанов, дополнительных элементов, мощности насоса и т.п.

Регулировка процесса нагрева

Существует 2 вида регулировки нагрева:

  • количественный – корректировка температуры происходит за счёт изменения потребления теплоресурса;
  • качественный – в этом варианте используется изменение параметров носителя тепла при неизменном потреблении теплоресурса.
Оцените статью:
Оставить комментарий